(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)(6)任意两项am,an的关系为an=am·q’(n-m)(7)在等比数列中,首项a1与公比q都不为零。数学数列知识点3 数列的相关概念 数列概念 ①数列是一种特殊的函数。
1、等差数列求和公式:等差数列是指一个数列中每相邻两项之差相等的数列,比如1,3,5,7,9就是一个等差数列。
2、定义式 对于数列若满足:则称该数列为等差数列。其中,公差d为一常数,n为正整数。通项公式 an=a1+(n-1)*d。首项a1=1,公差d=2。
3、(2n-1)。等差数列的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均属于正整数。
等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d。前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2。若m+n=p+q则:存在am+an=ap+aq。若m+n=2p则:am+an=2ap。以上n均为正整数。
通项公式:an=a1+(n - 1)d。通项公式的推广:任意两项(n , am的关系为an= am +(n - m)d。等比数数列的通项公式是:an=a1·qn-1。
等差数列公式:an=a1+(n-1)d,(n为正整数)a1为首项,an为第n项的通项公式,d为公差。
前n项和公式是Sn=na1(q=1)。数列公式前n项和是Sn=na1(q=1),如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数),这个数列就叫做等比数列。
常见8个数列的通项公式是等差数列、等比数列、一阶数列、二阶数列、累加法、累乘法、构造法、连加相减法。
我来总结一下数列求通项公式的 *** 累加法 如上图所示,这个就是用累加法求通项公式。
等差数列公式:an=a1+(n-1)d,(n为正整数)a1为首项,an为第n项的通项公式,d为公差。
等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d。前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2。若m+n=p+q则:存在am+an=ap+aq。若m+n=2p则:am+an=2ap。以上n均为正整数。
数列公式的总结如下:通项公式为:an=a1+(n-1)d或an=am+(n-m)d。前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2。若m+n=p+q则:存在am+an=ap+aq。若m+n=2p则:am+an=2ap。
前n项和公式是Sn=na1(q=1)。数列公式前n项和是Sn=na1(q=1),如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数),这个数列就叫做等比数列。
常用公式 等差数列求和公式:等差数列是指一个数列中每相邻两项之差相等的数列,比如1,3,5,7,9就是一个等差数列。
=an+f(n)。累乘法:递推公式为a(n+1)/an=f(n)。构造法:将非等差数列、等比数列,转换成相关的等差等比数列。连加相减法:{an}满足a+ 2a+ 3a+……+ nan = n(n+1)(n+2)。