内接四边形,圆内接四边形的性质

2023-10-03 22:21:24 体育信息 admin

内接四边形对角互补怎样证明?

首先证∠A+∠C=180 如图所示,连接DO, BO。设∠BOD为360°-θ ∵圆周角等于所对的圆心角的一半。∴∠C=1/2∠BOD。同理,∠A=1/2θ。∴∠A+∠C=1/2*360=180,即两角互补。

圆内接四边形的性质

1、圆内接四边形的性质总结是:圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。

2、圆的内接四边形的性质:圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆心角的度数等于所对弧的圆周角的度数的两倍。同弧所对的圆周角相等。圆内接四边形对应三角形相似。

3、圆内接四边形的性质如下:圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180° 。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC 。

4、内接四边形的性质是:圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆心角的度数等于所对弧的圆周角的度数的两倍。同弧所对的圆周角相等。圆内接四边形对应三角形相似。

内接四边形的性质是什么?

1、圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。圆心角的度数等于所对弧的圆周角的度数的两倍:∠AOB=2∠ACB=2∠ADB。

2、圆的内接四边形的性质:圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆心角的度数等于所对弧的圆周角的度数的两倍。同弧所对的圆周角相等。圆内接四边形对应三角形相似。

3、圆内接四边形的性质总结是:圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。

4、圆内接四边形的性质初中如下:四边形的四个顶点均在同一个圆上的四边形叫做圆内接四边形。圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。

5、圆内接四边形是指四个顶点均在同一圆上的四边形。圆内接四边形拥有很多几何性质。本文整理了其性质,欢迎阅读。

圆内接四边形有什么特征

1、圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆心角的度数等于所对弧的圆周角的度数的两倍。同弧所对的圆周角相等。圆内接四边形对应三角形相似。

2、圆内接四边形的性质总结是:圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。

3、三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 等于斜边的一半。经过半径的外端且垂直与这条半径的直线是圆的切线。

4、性质:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。

5、圆内接四边形是指四个顶点均在同一圆上的四边形。圆内接四边形拥有很多几何性质。本文整理了其性质,欢迎阅读。

6、如四边形abcd内接于圆o,延长ab至e,ac、bd交于p,则a+c=180度,b+d=180度,角abc=角adc(同弧所对的圆周角相等)。

版权声明:
免责声明
           本站所有信息均来自互联网搜集
1.与产品相关信息的真实性准确性均由发布单位及个人负责,
2.拒绝任何人以任何形式在本站发表与中华人民共和国法律相抵触的言论
3.请大家仔细辨认!并不代表本站观点,本站对此不承担任何相关法律责任!
4.如果发现本网站有任何文章侵犯你的权益,请立刻联系本站站长[ *** :775191930],通知给予删除
请先 登录 再评论,若不是会员请先 注册