首先证∠A+∠C=180 如图所示,连接DO, BO。设∠BOD为360°-θ ∵圆周角等于所对的圆心角的一半。∴∠C=1/2∠BOD。同理,∠A=1/2θ。∴∠A+∠C=1/2*360=180,即两角互补。
1、圆内接四边形的性质总结是:圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。
2、圆的内接四边形的性质:圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆心角的度数等于所对弧的圆周角的度数的两倍。同弧所对的圆周角相等。圆内接四边形对应三角形相似。
3、圆内接四边形的性质如下:圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180° 。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC 。
4、内接四边形的性质是:圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆心角的度数等于所对弧的圆周角的度数的两倍。同弧所对的圆周角相等。圆内接四边形对应三角形相似。
1、圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。圆心角的度数等于所对弧的圆周角的度数的两倍:∠AOB=2∠ACB=2∠ADB。
2、圆的内接四边形的性质:圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆心角的度数等于所对弧的圆周角的度数的两倍。同弧所对的圆周角相等。圆内接四边形对应三角形相似。
3、圆内接四边形的性质总结是:圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。
4、圆内接四边形的性质初中如下:四边形的四个顶点均在同一个圆上的四边形叫做圆内接四边形。圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。
5、圆内接四边形是指四个顶点均在同一圆上的四边形。圆内接四边形拥有很多几何性质。本文整理了其性质,欢迎阅读。
1、圆内接四边形的对角互补。圆内接四边形的任意一个外角等于它的内对角。圆心角的度数等于所对弧的圆周角的度数的两倍。同弧所对的圆周角相等。圆内接四边形对应三角形相似。
2、圆内接四边形的性质总结是:圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。
3、三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 等于斜边的一半。经过半径的外端且垂直与这条半径的直线是圆的切线。
4、性质:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。
5、圆内接四边形是指四个顶点均在同一圆上的四边形。圆内接四边形拥有很多几何性质。本文整理了其性质,欢迎阅读。
6、如四边形abcd内接于圆o,延长ab至e,ac、bd交于p,则a+c=180度,b+d=180度,角abc=角adc(同弧所对的圆周角相等)。